Leptospirosis: recent incidents and available diagnostics – a review

Yuszniahyati Yaakob, BSc (Hons), Kenneth Francis Rodrigues, PhD, Daisy Vanitha John, PhD

Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia

SUMMARY

Objective: The aim of this article was to review published research articles on leptospirosis, in particular the recent incidence of leptospirosis in Malaysia and the currently available diagnostic methods for the detection of leptospirosis.

Methods: PubMed, Google Scholar and Google Search databases were searched using the key words *Leptospira* and leptospirosis. A total of seventy-six references were reviewed including sixty-seven research articles, three annual reports from Ministry of Health and six online newspaper articles. This review includes the following five sub-headings: introduction, leptospirosis transmission, leptospirosis incidents, laboratory diagnosis of leptospirosis and treatment and prevention of leptospirosis.

Results: An increase in incidents of leptospirosis cases has been seen in recent years in Malaysia. The recent floods have contributed to the rise in the number of reported cases. Current diagnostic approaches such as dark field microscopy, microscopic agglutination test (MAT), Polymerase chain reaction and serological tests are inadequate as the organism is a slow grower.

Conclusion: There is an urgent need to develop newer techniques for rapid detection of leptospirosis. The combination of PCR and ELISA are suggested for rapid and accurate diagnosis of leptospirosis. Studies on the mechanism of pathogenesis of Leptospira are needed for the development of vaccines that are safe for human use.

KEY WORDS:								
Leptospira,	Leptospirosis,	diagnosis,	treatment,	prevention				

INTRODUCTION

Leptospirosis is a zoonotic disease occurs worldwide. It is endemic in tropical and subtropical countries in South-East Asia.¹ An increase in incidents has been seen in recent years due to flooding and outdoor recreational activities.² The World Health Organization (WHO) states that the global prevalence of leptospirosis is over one million severe human cases per year.^{3,4} Accurate clinical diagnosis can be difficult without laboratory confirmation and the disease burden is generally under-reported. WHO has formed the Leptospirosis Burden Epidemiology Reference Group (LERG) to establish correct estimations of the disease burden for better adequate intervention, control and prevention.⁴ The incubation period for leptospirosis is between two days and four weeks and the illness begins abruptly with fever and other symptoms. Leptospirosis may occur in two phases. In the first phase, the symptoms which can be observed are fever, chills, severe head ache, nausea, vomiting, myalgia and diarrhoea. Many of these symptoms can be mistaken for other diseases. The patient usually recovers for a time but become ill again. The second phase is called Weil's disease and is more severe and the symptoms include sepsis with multiple organ dysfunction, jaundice and haemorrhage which turn to circulatory shock and eventually death.⁵ The illness lasts from few days to three weeks and without treatment, recovery may take several months.⁶ In this review, the recent incidents in Malaysia and the available diagnostics for leptospirosis are discussed.

Leptospirosis is a water-borne disease mainly transmitted by rodents

Leptospires are spirochetes, which are thin, highly motile with an approximate size of 0.1µm in diameter and 6-20 µm in length with a distinctive hook or question-mark shape.⁷ The genus Leptospira can be divided into pathogenic and saprophytic strains, which belongs to the family Leptospiraceae and order Spirochaetales. Currently, there are 21 species, 25 serogroups and 250 serovars of pathogenic leptospires have been described.^{6,8} Leptospires are slowgrowing obligate aerobes with an optimal growth temperature of 28°C-30°C.9 The most widely used media to culture leptospires is the Ellinghausen-McCullogh-Johnson-Harris (EMJH) medium which contains oleic acid, bovine serum albumin (BSA), and polysorbate (Tween)⁷. The genome size of Leptospira is approximately 3.9-4.6 Mb (megabase) depending on the species. Six genome sequences of Leptospira have been published including two isolates of *L. interrogans* (serovar Lai and Copenhageni), two isolates of L. borgpetersenii (serovar Hardjo) and two isolate of L. biflexa (serovar Patoc).^{7,10,11}

The disease occurs wherever humans come into contact with the urine of infected animals or a urine polluted environment.¹² The usual portal of entry of leptospires is through cuts or abrasions in the skin. Leptospires also invade the human body through nasal, oral and conjunctival mucous membranes when exposed to contaminated water for a prolonged period of time. Inhalation of the aerosol containing leptospires may cause infection of the respiratory tract. The transmission of leptospirosis from human to human is rare. However, leptospires can be transmitted through sexual intercourse and breastfeeding.^{12,13} Once the

This article was accepted: 3 November 2015 Corresponding Author: Daisy Vanitha John, Associate professor, Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia Email: daisyv@ums.edu.my

leptospires invade the human body, it enters the blood circulation and attacks the organs and tissues. The excretions of leptospires in urine of humans occur continuously for up to 11 months. The main carriers of pathogenic strains of leptospires are cattle, pigs, buffaloes, dogs and particularly rodents.⁹ They are called as natural maintenance host as they serve as the main reservoirs for pathogenic leptospires. Importation of animals also leads to the transmissions of leptospirosis to the domestic livestock, pet animals or native wildlife.14 The transmission of leptospires depends on many factors, including climatic condition, population density, and the degree of contact with the host.¹⁵ Occupational exposure is the risk factor for sewage workers, peasants, veterinarians, miners and rodent control workers due to high degree of contact with the animal host or contaminated water and soil.16,17

Although the mechanism of pathogenesis remains unclear, several virulence factors have been implicated to the pathogenicity which includes LPS, haemolysins, outer membrane proteins (OMPs) and other surface protein.¹⁸ LPS of Leptospira resembles standard gram-negative LPS immunologically and chemically with a reduced biological activity in endotoxic assays.^{7,19,20} Leptospira haemolysins have been suggested to be phospholipases that causes holes in erythrocyte of sheep, calves and other mammalian cells.^{21,22} OMPs of Leptospira have been reported to induce immune response against the disease, particularly LipL32, a 32kDa lipoprotein. Antibodies to LipL32 serve as an important serologic marker during leptospirosis.²³⁻²⁷

Leptospirosis incidents shows an increasing trend in recent years in Malaysia

Adolf Weil in 1886 discovered and published the details of severe form of leptospirosis.²⁸ Inada and colleagues in 1916 demonstrated spirochetes in the liver tissue of a guinea pig injected with the blood of a patient suffering from infectious jaundice.^{29,30} Two groups of German physicians succeeded in transmitting leptospirosis to guinea pigs and they gave the names, *Spirochaeta nodosa* and *Spirochaeta icterogenes*.^{31,32} The nomenclature of *Leptospira* was introduced by Arthur Stimson when he isolated spirochete from kidney tissue sections of a patient thought to have died of yellow fever in 1907. This was followed by the discovery of a concentrated bacterium in the renal tubules with a question mark shape that gives the name *Spirocheta interrogans*.³³

Leptospirosis was first reported in Malaysia in 1925. A study conducted among the town service workers in Malaysia indicated a high seroprevalence among garbage collectors (27.4%), followed by town cleaners (23.8%), landscapers (13.8%) and lorry drivers (17.9%). High seroprevalence among garbage collectors was considered due to longer duration of exposure and close contact with the garbage that might be contaminated with *Leptospira* infected rat urine.¹ High seroprevalence was also noted among people living within the national park, Sabah which can be attributed to exposure to the wild animals.¹⁵

Since December 2010, Leptospirosis has been gazetted as a notifiable disease under Prevention and Control of Infectious

Disease Act 1988. According to Malaysia Ministry of Health, the number of Leptospirosis cases has increased dramatically in the past 5 years with 22,566 reported cases and 296 fatalities in the age group between 20 to 60 years. More than half of the cases reported were males. The highest number of reported cases and fatalities was in 2014 with 7806 cases and 92 fatalities. Of the 7806 cases reported, Selangor has the highest number with 1832 cases.³⁴⁻³⁷ Up to July 2015, the number of Leptospirosis reported cases in Malaysia was 5370 and 30 fatalities with high incidence in 5 states including Kelantan, Selangor, Sarawak, Kedah and Terengganu. As shown in Table I, only sporadic cases were observed in Sabah while from January 1 to January 18, 2015, a total of 647 suspected and 110 confirmed cases of leptospirosis were reported after the floods in Kelantan, Perak, Terengganu and Pahang which might be due to leaching of leptospires from the soil.

Laboratory diagnosis of leptospirosis

Diagnosis of leptospirosis is difficult due to the wide diversity of clinical symptoms which mimic regular symptoms of fever. The diagnostic methods include direct examination by dark field microscopy, rapid nucleic acid test by Polymerase Chain Reaction (PCR) and rapid antibody-based tests.⁴⁶ Use of combination of laboratory tests is recommended for accurate diagnosis.

Dark Field Microscopy (DFM) has low sensitivity

Approximately 10² to 10⁶ leptospires/ml of blood is necessary for visualization by dark field microscopy which results in low sensitivity compared to other diagnostic methods.^{46,47} The sensitivity of DFM was shown to be 61% and 93.3% and the specificity was 60%.^{48,49} Although, this diagnostic method involves low cost, there is a risk of false positives due to the misinterpretation of fibrin or other protein threads and thus not recommended for diagnosis.

Rapid Nucleic Acid Diagnostic Tests are rapid and specific Polymerase Chain Reaction (PCR) based method has gained popularity for diagnosis of leptospirosis. Conventional and nested PCR have been developed previously, for the detection of leptospires targeting specific genes, particularly LipL32 or secY genes.⁴⁹ PCR-based method usually detects DNA in the blood sample in the first 5 to 10 days after the onset symptoms and up to day 15. The detection limits of PCR assay is 100-1000 bacteria per millilitre of blood or urine sample.^{50,51} The conventional PCR assay has been replaced by real-time quantitative PCR (RT-PCR) such as SYBR Green qPCR and TaqMan PCR which are much faster. The sensitivity and specificity of RT-PCR targeting rss gene was shown to be 56% and 90% respectively.⁵² While the sensitivity and specificity of RT-PCR targeting lipl32 gene was reported to be 43-93% and 97-100% respectively.^{52,53} Multiplex assays have developed for simultaneous detection been and differentiation of pathogenic and nonpathogenic Leptospira.54 PCR is sensitive, specific, and become positive early in disease and able to detect leptospires DNA in blood, urine, cerebrospinal fluid (CSF) and aqueous humour. However, this test appears to be genus specific and not serovar specific and requires highly skilled personnel to perform the test to prevent contamination and false positive results.6

S.No	Year	Location	Fatalities	Positive cases	Reference
1	2010	Hutan Lipur Lubuk Yu, Maran	6		Lim et al. 2011 ³⁸
2	2011	Eastern Pahang	8		Lim e <i>t al.</i> 2011 ³⁸
3	2013 (Nov)	Putatan, Sabah	2		BorneoPost Online, 2013 ³⁹
ŀ	2014 (April)	Sibu, Sarawak	6		Boon, 2013 40
5	2014 (October)	Labuan Matriculation College	1		ESSCOM TIMES, 2014 41
;	2014 (Nov)	Labuan Matriculation College		2	BorneoPost Online. 2014 ⁴²
	2015 (Jan 1-15)	Kelantan		458 (49)*	Abdullah, 2015 ⁴³
		Perak		113 (21)*	
		Terengganu		39 (26)*	
		Pahang		37 (14)*	
3	2015 (June)	Jempol, Pahang	1	14	Pei Ying, 2015 44
)	2015 (June)	Sibu, Sarawak	1	10	Chua, 2015 ⁴⁵

Table I: Recent incidence of leptospirosis in Malaysia

*(Figures in parenthesis: confirmed cases)

Diagnosis method		Sensitivity	Specificity	Reference		
Microbiology	Dark Field Microscopy (DFM)	61%	60%	Sharma and Kalawat, 2008 ⁴⁸		
		93%		Chandrasekaran and Gomathi, 2004 ⁴⁹		
Serology	Microscopic Agglutination Test (MAT)					
	1-5 days	30%	97%	Cumberland <i>et al.</i> 1999 ^{₅₅}		
	5-14 days	63%		Cumberland <i>et al.</i> 1999 ^{₅₅}		
	Convalescent	76%	86.7%	Cumberland <i>et al.</i> 1999 ^{₅₅}		
		91.4%		Eugene <i>et al.</i> 2015 ⁵⁶		
	Enzyme-linked Immunosorbent Assay (ELISA)					
	IgM	86.5%	97%	Silva et al., 1995 ⁵⁸		
	rLIPL32	96.4%	90.4%	Vedhagiri <i>et al.</i> 2013 ⁶⁴		
	Immunoflurescence (IF)					
		45%	96.8%	Limmathurotsakul et al. 2012 ⁶⁵		
		91.9%	100%	Kemapunmanus et al. 2004 ⁶⁶		
	Hemagglutination (HA)					
		79%	81.1%	Bajani et al. 2003 ⁵⁹		
	Lateral flow assay (LFA)					
	1st week	52.9%	93.6%	Sehgal <i>et al.</i> 2003 ⁷¹		
	2-4 weeks	86%	89.4%	Sehgal et al. 2003 71		
Molecular methods	Real-time Polymerase Chain Reaction (RT-PCR)					
	rss gene	56	90	Thaipadunpanit et al. 2011 ⁵²		
	lipl32 gene	43	93	Thaipadunpanit e <i>t al.</i> 2011 52		
		100	97	Thaipadunpanit e <i>t al.</i> 2011 ⁵² ,		
				Villumsen et al. 2012 ⁵³		

Table II: Laboratory diagnostic methods for leptospirosis

Rapid Antibody-Based Diagnostic Tests: Microscopic Agglutination Test (MAT) is laborious

MAT, described by Martin and Pettit is the most widely used reference method for the diagnosis of human leptospirosis. The MAT requires maintaining a panel of live leptospires belonging to different serovars in the laboratory for the detection of agglutinating antibodies against *Leptospira* in the patient serum. The principle of MAT is simple, but this method is time consuming and laborious. Moreover, maintaining a live panel of *Leptospira* from different serovar in the laboratory may cause greater potential hazard to laboratory personnel. The sensitivity of the assay was 30% after 1 to 5 days which increases to 63% after 5 to 14 days of illness. In the convalescent stage, the sensitivity was shown to be 76-91.4%. The specificity of MAT assay was reported to be 86.7-97%.^{55,56} MAT cannot be standardised since live leptospires are used as antigens.⁴⁶

Enzyme-Linked Immunosorbent Assay (ELISA) is more specific

ELISA has been used extensively for the diagnosis of leptospirosis and it allows the detection of *Leptospira*-specific

IgM antibodies. Commercial IgM ELISA is based on the detection of antibodies against whole cell or recombinant surface protein or lipoprotein of *Leptospira*.⁵⁷ The cost of this diagnostic test is relatively cheap and requires only a small volume of sample for the assay. *Leptospira*-specific IgM may be detected four to five days after the onset symptoms before detecting *Leptospira*-specific IgG which persist for up to five months in patients.⁵⁸ The sensitivity and specificity of the IgM ELISA was reported to be 86.5% and 97% respectively.⁵⁹ Several studies indicate that ELISA is able to detect anti*Leptospira* antibodies earlier than the MAT.^{13,60} The use of recombinant LipL32 in ELISA was able to detect Leptospira-specific antibodies with an excellent sensitivity (96.4%) and specificity (90.4%) and it is considered as a screening test for large number of serum samples.⁶¹⁻⁶⁴

Other serological tests: The immunofluorescence assay is based on the specificity of the antibody to their antigen and uses a fluorescent dye as detection reagent. This method can be used to detect specific antibodies in body fluids or antigen in tissue samples. The sensitivity of the immunofluorescence assay was reported to be 45.5 and 91.9% and the specificity

was 96.8 and 100%.65,66 Although the specificity and sensitivity of the immunofluorescence assay was comparable to ELISA, it is not widely available since it requires fluorescent microscope.67 Haemagglutination assay uses erythrocytes, which are sensitized with an extract of an erythrocytesensitizing substance from *L. biflexa* serovar Patoc.^{68,69} The test involves incubating heat-inactivated test serum with sensitized erythrocytes which causes the formation of agglutination.⁴⁶ The concept of this assay is simple and requires no specialized equipment. The sensitivity and specificity of haemagglutination assay was reported to be 79% and 81.1% respectively.59 It might be useful for laboratories which require high performance of leptospirosis diagnostic capability.⁷⁰ Lateral flow assay (LFA) requires no specialised equipment and electricity and detects the presence of target analytes in the sample. LFA can be performed at the bedside of the patients using whole blood and the results were comparable to ELISA and MAT.71-73 LFA has sensitivity and specificity of 52.9% and 93.6% for the first week of illness and the levels increased to 86% and 89.4% after 2 to 4 weeks.⁷¹ LFA is not widely used since its usage is restricted to specific geographical locations.74

Treatment and prevention of leptospirosis is available

It is important to treat leptospirosis early to avoid severe complication and potential fatality. Leptospirosis can be treated with antimicrobial therapy. There are several antibiotics including penicillin, erythromycin, ampicillin, amoxicillin, ceftriaxone and doxycycline. Patients with severe infections of leptospirosis should be treated by intravenous penicillin in doses of 50,000-100,000 U/kg/day for seven to ten days. Meanwhile, for patients with penicillin allergy, erythromycin may be given 30-50mg/kg/day in three to four doses for seven to 10 days. For mild cases, oral amoxillin (30-40 mg/kg/day)or ampicillin (50-100mg/kg/day) may be given to the patients four times a day for seven to ten days. Children with more than 8 years of age can be treated with doxycycline (2mg/kg/dose) two times a day for seven to 10 days.75,76 These antibiotics are able to decrease the fever and most symptoms. Leptospirosis patient should be observed for the evidence of renal failure and treated for dialysis when necessary. There is no vaccine currently available for human use. Preventive measures including vaccination program for domestic animals, establishing a rodent control program, practicing a good personal hygiene such as wearing footwear when outdoors and wearing gloves and face mask while working with animals are recommended.

CONCLUSION

Leptospirosis is a zoonotic disease which requires immediate treatment. Accurate diagnosis is challenging as the organism is not easily cultivable. There is a need for developing newer techniques for rapid detection of leptospirosis which require validation by reference centres that are familiar with validation schemes of diagnostic tests. The current diagnostic tests for Leptospirosis show varying levels of performance (Table II). The sensitivity and specificity of DFM is lower compared to all the other assays. Although the specificity of most of the serological tests is higher, the sensitivity is lower particularly during the first week of illness. Also, most serological tests including MAT assay is prone to subjectivity as the results are read by visual observation. PCR has high specificity. However, it becomes negative after 2 weeks. The ELISAs show high specificity and sensitivity and they are not routinely used in many laboratories in Malaysia. Based on the current performance of the assays, combination of PCR and ELISA might yield rapid and accurate diagnosis and may be beneficial in outbreak investigations. Since these assays do not identify different serovars, positive samples may be tested by MAT for determining the serovar which is important for epidemiological investigations. Studies on mechanism of pathogenesis of *Leptospira* are also needed to understand the interaction of *Leptospira* with the host in causing the disease and protective immune responses to develop vaccines that are safe for human use. Preventive measures are required to control the spread of leptospirosis in the community.

ACKNOWLEDGMENT

This study was funded by UMS grant SBK0071-SKK-2013 and Ministry of Higher Education Grant No, FRG0407-SG-1/2015.

REFERENCES

- Shafei MN, Sulong MR, Yaacob NA, et al. Seroprevalence of Leptospirosis among Town Service Workers in Northeastern State of Malaysia. Int J Collab Res Intern Med Public Heal 2013; 4(4): 395-403.
- Vke L. Leptospirosis: a re-emerging infection. Malays J Pathol 2001; 33(1): 1-5.
- 3. Cosson JF, Picardeau M, Mielcarek M, *et al.* Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia. PLoS Negl Trop Dis 2014; 8(6): e2902.
- World Health Organization (WHO). Leptospirosis Burden Epidemiology Reference Group (LERG). July 13, 2010. Available at: http://www.who.int/zoonoses/diseases/lerg/en/. Accessed: May 15, 2015.
- Wagenaar JFP, Goris MGa, Gasem MH, et al. Long pentraxin PTX3 is associated with mortality and disease severity in severe Leptospirosis. J Infect 2009; 58(6): 425-32.
- Musso D, Scola BL. Laboratory diagnosis of Leptospirosis: A challenge. J Microbiol Immunol Infect 2013; 46(4): 245-52.
- Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. Vet Microbiol 2010; 140(3-4): 287-96.
- Levett P. Systematic of Leptspiraceae. In: Adler B (ed). Leptospira and Leptospirosis. Springer Berlin Heidelberg, 2015; 11-20
- 9. Faine S, Adler B, Bolin C, *et al.* Leptospira and leptospirosis (2nd ed). Melbourne: MediSci, 1999.
- Bulach DM, Zuerner RL, Wilson P, et al. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 2006; 103: 14560-65.
- 11. Picardeau M, Bulach DM, Bouchier C, *et al.* Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 2008; 3(2): e1607.
- World Health Organization (WHO). Human leptospirosis: guidance for diagnosis, surveillance and control. Rev Inst Med Trop Sao Paulo 2003; 45(5): 1-122.
- 13. Levett P. Leptospirosis. Clin Microbiol Rev 2001; 14(2): 296-326.
- 14. Guerra MA. Leptospirosis: public health perspectives. Biologicals 2013; 41: 295–7.
- 15. Thayaparan S, Robertson I, Fairuz A, *et al.* Leptospirosis, an emerging zoonotic disease in Malaysia. Malays J Pathol 2013; 35(2): 123-32.
- De Serres G, Levesque V, Higgins R, et al. Need for vaccination for sewer worker against, Leptospirosis and Hepatitis A. Occup Environ Med 1995; 52(8): 505-7.
- Mohan Rao A. Preventive measures for leptospirosis: rodent control. Indian J Med Microbiol 2006; 24(4): 325-28.
- Evangelista KV, Coburn J. Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune response. Future Microbiol 2010; 5(9): 1413-25.
- 19. Que-Gewirth NLS, Ribeiro AA, Kalb SR, *et al.* A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A: The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem 2004; 279: 25420-9.
- Werts C, Tapping RI, Mathison JC, et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2(4): 346-52.

- 21. Thompson JC. Morphological changes in red blood cells of calves caused by Leptospira interrogans serovar pomona. J Comp Pathol 1986; 96: 517-27
- 22. Lee SH, Kim S, Park SC, et al. Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 2002; 70: 315-22.
- 23. Khodaverdi DE, Mohammad MF, Soheila MD, et al. Cloning and Sequence Analysis of LipL32, a Surface-Exposed Lipoprotein of Pathogenic Leptospira Spp. Iran Red Crescent Med J 2013; 15(11): e8793.
- 24. Hoke DE, Egan S, Cullen PA, et al. LipL32 is an extracellular matrixinteracting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun 2009; 76: 2063-9.
- Yang CW, Wu MS, Pan MJ, et al. The Leptospira Outer Membrane Protein 25. LipL32 Induces Tubulointerstitial Nephritis-Mediated Gene Expression in Mouse Proximal Tubule Cells. J Am Soc Nephrol 2002; 13(8): 2037-45.
- Haake DA, Chao G, Zuerner R, et al. The Leptospiral Major Outer 26. Membrane Protein LipL32 Is A Lipoprotein Expressed During Mammalian Infection. Infect Immun 2000; 68(4): 2276-85.
- 27. Guerreiro, H. Croda, J. Flannery, B. et al. Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans. Infect Immun 2001; 69(8): 4958-68.
- Faine S. Taxonomy, classification and Nomenclature. Boca Raton: CRC 28. Press, 1994; 117-40.
- Kobayashi Y. Discovery of the causative organism of Weil's disease: 29. Historical view. J Infect Chemother 2001; 7(1):10-5.
- Adler B. History of Leptospirosis and Leptospira. In Adler B. Leptospira and 30. leptospirosis. (ed). London: Springer. 2015; 1-9. 31. Uhlenhuth P, Fromme W. Experimentelle Untersuchen uber die
- sogenannte Weilsche Krankheit. Med.Klin 1915; 44: 1202-3.
- Hübener EA, Reiter H. Beiträge zur Aetiologie der Weilschen Krankheit. 32. Dtsch Med Wochenschr 1915; 41: 1275-7.
- Heath CW, Alexander AD, Galton MM. Leptospirosis in the United States. 33. N Engl J Med 1965; 273(17): 915-22.
- Malaysia Ministry of Health. Annual Report 2010. Ministry of Health; 34. 2010
- Malaysia Ministry of Health. Annual Report 2011. Ministry of Health; 35. 2011.
- Malaysia Ministry of Health. Annual Report 2012. Ministry of Health; 36. 2012.
- Wahab ZA. Epidemiology and Current Situation of Leptospirosis in 37 Malaysia. In: Environmental Health Conference with Local Authorities. Labuan; 2015.
- Lim JK, Murugaiyah VA, Ramli A, $et\ al.$ A Case Study : Leptospirosis In Malaysia A Case Study : Leptospirosis In Malaysia Human Leptospirosis 38. in Malaysia. WebmedCentral > Rev Artic 2011.
- 39. BorneoPost Online. Two Leptospirosis Death in Putatan. November 24, 2013. Available at: http://www.theborneopost.com/2013/11/24/twoleptospirosis-deaths-in-putatan/. Accessed: December 1, 2014.
- Boon P. Leptospirosis killed 6 people so far this year. April 14, 2014. 40. Available at: http://www.theborneopost.com/2014/04/14/leptospirosiskilled-6-people-so-far-this-year/. Accessed: December 4, 2014.
- ESSCOM TIMES. Labuan college student suspected to have died in Leptospirosis. October 29, 2014. Available at: http://esscom.gov.my/newsin-english/labuan-college-student-suspected-died-leptospirosis/. Accessed: December 4, 2014.
- 42. BorneoPost Online. Two new leptospirosis cases reported in Labuan Matriculation College. November 27, 2014. Available at: http://www.theborneopost.com/2014/11/27/two-new-leptospirosis-casesreported-in-labuan-matriculation-college/. Accessed: December 4, 2014.
- Abdullah N. Siaran media: Tindakan Kementerian Kesihatan Menangani 43. Banjir 19 Januari 2015. January 19, 2015. Available at: http://kpkesihatan.com/2015/01/19/siaran-media-tindakankementerian-kesihatan-menangani-banjir-19-januari-2015. Accessed: March 26, 2015.
- 44. Pei Ying T. Form 5 student dies from leptospirosis. June 3, 2015. Available at: http://www.nst.com.my/node/86762. Accessed: June 29, 2015.
- 45. Chua A. Fisherman dies from leptospirosis. June 24, 2015. Available at: http://www.thestar.com.my/News/Nation/2015/06/24/Fisherman-diesfrom-leptospirosis-China-national-one-of-10-with-the-disease/. Accessed: June 29, 2015.
- 46. Picardeau M. Diagnosis and epidemiology of leptospirosis. Med Mal Infect 2013; 43: 1-9.
- Krishna S, Joseph S, Ambily R, et al. Evaluation of Dark Filed Microscopy, 47. Isolation and Microscopic Agglutination Test for the Diagnoses of Canine Leptospirosis. Int J Pharm Biol Sci 2012; 2(3): 85-9.
- Sharma KK, Kalawat U. Early diagnosis of leptospirosis by conventional 48. methods: One-year prospective study. Indian J Pathol Microbiol 2008; 51: 209-11.
- 49 Chandrasekaran S, Gomathi S. A standard screening test for the early and rapid diagnosis of leptospirosis. Indian J Med Microbiol 2004; 22(1): 23-7.

- 50. Bourhy P, Bremont S, Zinini F, et al. Comparison of real-time PCR assay for detection of pathogenic Leptospira spp. in blood and identification of variations in target sequence. J Clin Microbiol 2011; 49(6): 2154-60.
- 51. Stoddard RA, Gee JE, Wilkins PP, et al. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting LipL32 gene. Diagn Microbiol Infect Dis 2009; 64(3): 247-55. 52. Thaipadunpanit J, Chierakul W, Wuthiekanun V, *et al.* Diagnostic
- Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study. PLoS One 2011; 6(1): e16236.
- 53. Villumsen S, Pedersen R, Borre MB, et al. Novel TaqMan® PCR for detection of Leptospira species in urine and blood: Pit-falls of in silico validation. J Microbiol Methods 2012; 91(1): 184-90.
- 54. Bedir O, Kilic A, Atabek E, et al. Simultaneous detection and differentiation of pathogenic and nonpathogenic Leptospira spp. by multiplex real-time PCR (TaqMan) assay. Pol J Microbiol 2010; 59: 167-73.
- 55. Cumberland P, Everard CO, Levett PN. Assessment of the efficacy of an IgM-ELISA and microscopic agglutination test (MAT) in the diagnosis of acute Leptospirosis. Am J Trop Med Hyg 1999; 61(5): 731-4.
- 56. Eugene EJ, Handunnetti SM, Wickramasinghe S a., et al. Evaluation of two immunodiagnostic tests for early rapid diagnosis of leptospirosis in Sri Lanka: a preliminary study. BMC Infect Dis 2015; 15(1): 319.
- 57. Chen HW, Zhang Z, Halsey ES, et al. Detection of Leptospira-specific antibodies using a recombinant antigen-based enzyme-linked immunosorbent assay. Am J Trop Med Hyg 2013; 89(6): 1088-94.
- 58. Silva MV, Camargo ED, Batista L, et al. Behaviour of specific IgM, IgG and IgA class antibodies in human leptospirosis during the acute phase of the disease and during convalescence. J Trop Med Hyg 1995; 98: 268-72.
- Bajani M, Ashford D, Bragg S, et al. Evaluation of four commercially 59. available rapid serological test for diagnosis of leptospirosis. J Clin Microbiol 2003; 41(2): 803-9.
- Doungchawee G, Kositanont U, Niwetpathomwat A, et al. Early diagnosis of Leptospirosis by immunoglobin M immunoblottesting. Clin Vaccine 60 Immunol 2008; 15(3): 492-8.
- 61. Boonyod D, Poovorawan Y, Bhattarakosol P, *et al.* Lipi32 an outer membrane protein of Leptospira as an antigen in a dipstick assay for diagnosis of leptospirosis. Asian Pac J Allergy Immunol 2005; 23: 133-41.
- 62. Dey S, Madhan M, Ramadass P, et al. Diagnosis of leptospirosis by recombinant antigen based single serum dilution ELISA. Indian J Med Res 2008: 128(2): 172-7
- 63. AiHua S, Yuan W, Peng D, Shengling W, Jie Y. A sensitive and specific IgM-ELISA for the serological diagnosis of human leptospirosis using a rLipL32/1-LipL21-OmpL1/2 fusion protein. Biomed Environ Sci 2011; 24(3): 291-9
- Vedhagiri K, Velineni S, Timoney JF, et al. Detection of LipL32-specific IgM 64. by ELISA in sera of patients with a clinical diagnosis of leptospirosis. Pathog Glob Health 2013; 107(3): 130–5.
- Limmathurotsakul D, Turner EL, Wuthiekanun V, et al. Fool's Gold: Why Imperfect Reference Tests Are Undermining the Evaluation of Novel Diagnostics: A Reevaluation of 5 Diagnostic Tests for Leptospirosis. Clin 65. Infect Dis 2012; 55(3): 322–31.
- Kemapunmanus M, Sretrirutchai S, Khuntikij P, et al. A prospective 66 evaluation of four immunodiagnotic assays for human leptospirosis. Southeast Asian J Trop Med Public Health 2004; 35(4): 863-7
- 67. Appassakij H, Silpapojakul K, Wansit R, Woodtayakorn J. Evaluation of the immunofluorescent antibody test for the diagnosis of human leptospirosis. Am J Trop Med Hyg 1995; 52(4): 340-3.
- 68. Chang R, Smith D, McComb D, *et al.* The use of erythrocyte sensitizing substance in the diagnosis of leptospirosis. II. The sensitized erythrocyte lysis test. Am J Trop Med Hyg 1957; 6(1): 101-7.
- 69. McComb D, Smith D, Coffin D, et al. The use of erythrocyte sensitizing substance in the diagnosis of leptospirosis. I. The sensitized erythrocyte agglutination test. Am J Trop Med Hyg 1957; 249(1): 90-100. Levett P, Whittington C. Evaluation of the indirect hemaglutination assay
- 70. for diagnosis of acute leptospirosis. J Clin Microbiol 1998; 36(1):11-4.
- Sehgal SC, Vijayachari P, Sugunan AP, et al. Field application of Lepto 71. lateral flow for rapid diagnosis of leptospirosis. J Med Microbiol 2003; 52: 897-901.
- 72. Smits HL, Eapen CK, Sugathan S, et al. Lateral-Flow Assay for Rapid Serodiagnosis of Human Leptospirosis. Clin Diagn Lab Immunol 2001; 8(1): 166-9.
- 73. Goarant C, Bourhy P, D'Ortenzio E, et al. Sensitivity and Specificity of a New Vertical Flow Rapid Diagnostic Test for the Serodiagnosis of Human Leptospirosis. PLoS Negl Trop Dis 2013; 7(6): 1-9.
- 74. Picardeau M, Bertherat E, Jancloes M, et al. Rapid tests for diagnosis of leptospirosis: Current tools and emerging technologies. Diagn Microbiol Infect Dis 2014; 78: 1-8.
- 75. Shah I. Leptospirosis. Pediatr Infect Dis 2012; 4(1): 4-8.
- Costa E, Lopes AA, Sacramento E, et al. Penicillin at the late stage of 76. leptospirosis: A randomized controlled trial. Rev Inst Med Trop Sao Paulo 2003; 45(3): 141-5.